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Abstract-A consistent six-tenn asymptotic series is derived for the critical value of the defonnation
parameter as a function of aspect ratio (thickness: height), in the limit as this ratio becomes
unbounded, for a plate of general incompressible isotropic material. Values for both flexural and
barreling modes are obtained in the case where the loading is a thrust. The theoretically important
class of Mooney-Rivlin materials is treated as a special case.

INTRODUcnON

The condition describing the critical deformation at which a thick plate of incompressible
elastic material may undergo a bifurcation might now be regarded as a classical result in
the literature on finite elasticity, its having been derived in various contexts by a number
of workers. An account of some of this work is given in Refs [1-3]. Briefly, the bifurcation
condition is an equation relating a deformation parameter, A, and a geometric factor, 11,
proportional to the plate's aspect ratio (thickness: height), the solution of which is the
critical value of A (see eqn (4».

Other workers, including Biot[4], Nowinski[5] and Usmani and Beatty[6], related the
appearance of wrinkles on the surface of a "half-space" of Mooney-Rivlin (or neo­
Hookean) material to bifurcations ofa thick plate, in the limiting case 11 - 00. The purpose
of this paper is to develop a consistent basis for carrying forward the analysis pertaining
to the connection between the thick plate and its idealized limit.

Recently, Sawyers and Rivlin[7] employed Koiter's theory[8] and developed the analy­
sis required to decide the stability (or lack thereof) of the underlying critical states of
deformation for a plate of arbitrary aspect ratio the material behavior ofwhich is modeled
by a completely general strain-energy function. The resulting formula is complicated and
acquires meaning only through numerical calculations. Towards this end, an analysis was
carried out for the limiting case of a thin plate, 11 - O.

A preliminary result, on which this analysis was based, was obtained much earlicr[9],
and came directly from the bifurcation equation itself. This amounted to establishing a
consistent series approximation for A (near unity) in terms of 11 (near zero). A striking
feature of this result, for the thin plate, is the essential insensitivity of A to details of the
strain-energy function, at least up to all relevant powers of 11 required for the stability
analysis in Ref. [7].

In contrast to this, an immediate inference drawn from Refs [2,3] is that, for large 11,
the critical value of Adepends strongly on the constitutive assumption. Specifically, as 11 -+

00, the critical value of A tends to a limiting number, X, which can be determined only by
finding the root of a certain equation; and this procedure cannot even begin until the form
of the strain-energy function is stated explicitly (see eqn (9». Nevertheless, it is possible to
carry the analysis forward, much in the spirit of Ref. [9], leaving the root-finding problem
as the only remaining task.

To keep the work here as uncomplicated as possible, while retaining a reasonable
degree of generality, we shall restrict attention to the class of materials for which flexural
and barreling bifurcations cannot occur simultaneously (Le. at a single value of A) for any
finite value of 11. This class includes the Mooney-Rivlin (and neo-Hookean) material for
which the following result is known (see Refs [I, 2, 4-6]): A-+ 3.383 as 11- 00.
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BACKGROUND

The body under consideration is a rectangular plate of incompressible material the
initial height, thickness and width of which are 2/ 1, 2/2, 2/3, respectively, with 13 » 11> 12,

Uniformly distributed normal forces are applied to the vertical end faces, thereby inducing
a stretch in the width direction, with extension ratio A3' No further deformation occurs in
the width direction. The top and bottom faces are subjected to equal and opposite uniformly
distributed normal thrust forces, while the major vertical faces remain free of tractions.
Under these conditions the plate tends to shorten in the vertical direction and its thickness
tends to increase, the extension ratios in these directions being Ah A2' respectively. A single
parameter suffices to describe this underlying state of deformation, which we take to be
A/= A2IAI' As the thrust is increased, A increases from unity and, at a certain critical value
of A, a bifurcation in the form of a small superposed deformation in the plane normal to
the width direction becomes possible.

The strain-energy, W, per unit volume, is expressible as a function of I J and 12, defined
in terms of Aand A3 by

(1)

It has been shown that the bifurcation equation depends on W only through a single
material parameter which may be taken as[2, 3, 9]

(2)

wheret

(3)

We shall here restrict attention to materials for which A > - I, Le. to materials for which
flexural and barreling modes cannot appear simultaneously. Accordingly, the bifurcation
equation may be written as[2]

where

(4)

and where

R = (A-l)(A+ 1)1/2 (5)

n = 1,2,3, ... (6)

n being the number of half-wavelengths along the vertical direction in the mode considered.
The numerical parameter v is I or - 1 accordingly as the bifurcation is of flexural or
barreling type.

In Ref. [2] it was proven that the demarcation between flexural and barreling regimes
is the curve in the A-A. plane defined by the vanishing of the denominator in the right-hand
member of eqn (4), namely

(7)

or, with eqn (5)J

t We use the notation W, = oW/ol" W'2 = 02W/o1, 012, etc.
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(8)

This separatrix is plotted as Fig. 3 of Ref. [2J. Now for a specified material and for a
specified value of A. 3, the relevant A function can be calculated, as a function of A., using
eqns (1) and (2), and the result compared with A(A.) in eqn (8). If A (A.) > A(l), only flexural
modes are possible. The case of interest here, however, is where the material function A(l)
intersects the separatrix so that, at least for some values of l, we have A(l) < A(l). Then
barreling modes may appear. We shall assume that this is the case and denote by Xthe
(smallest) value of A. for which (cf. eqn (8»

Of necessity, as shown in Ref. [2]

(9)

I>3 ifA>-l. (10)

Further, from Ref. [2] it is known that '1'" <Xl as l ... I, and vice versa, and it is the
investigation of the solutions of eqn (4) in this limit that is the object of this paper. We
remark here that flexural and barreling cases can be handled simultaneously, without undue
complication, through the explicit appearance of v in eqn (4). Previous results suggest,
however, that flexural deformations may be inherently unstable in this "thick-plate"
limit[IO,II]·t

ANALYSIS

We begin by expanding quantities that appear in the right*hand member of eqn (4) in
the Taylor series about I. To facilitate this, from eqns (5) we verify the general result,
Q2 =4l+R2, valid for arbitrary values of l. Then

From eqns (5) and (9) follow

(! = JX(I-I), .R. =JX{(I+ 1)(I-3)} 1/2

(1 I)

(12)

where we use the notation (l = Q(I), etc. The eqns (ll) and (12) yield

R2 = .R.2{I+rld+!r2d2+ir3d3+0(d4)}

Q2 = Q2{1 +(ql + 4/(l2)d+ W2d2+ iq3d3 + hq..d4+O(dS)}

where

d=l-X

and

(13)

(14)

(15)

The application of the Maclaurin series {l +X)I/2 = 1+x/2-x2/8+x3/16+ ... to eqns (13)
yields

t Specifically, no flexural mode is stable for the neo-Hookean material if" > 0.32, corresponding to ..l > 1.07.
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R = R{l +Rld+R2d2+R3d3+0(d4)}

Q = Q{l +Qld+Q2d2+Q3d3+0(d4)}

R 1 = rd2, R2 = (r2-dj2)j4

R 3 = (r3-3rlr2/2+3d/4)/12

QI = (ql +4/(2)/2, Q2 = {q2-(ql +4/(2)2/2}/4

Q3 = {q3 -3q2(ql +4/(2)j2+3(q) +4/(2)3j4}/12.

(16)

(17)

Noting that). = I+d, ().+ I) = I+ I +d, etc., we use eqns (13), with eqns (12), to obtain

where

R2+).(A.+ 1)2 = 2A.(J.2 -1){1 +N1d+N2d2+N3d
3+O(d4)}

Q2_)'()'_1)2 = -().-1)2Dld{I-D2d-D3d2_D4d3+0(d4)}

N1 = {R2r l+(I+I)(3I+I)}/{2I(J.2-I)}

N2= {1R2r2 + 3I+2}/{2I(J.2 -I)}

N 3 = {!R2r3+ 1}/{21(J.2-1)}

D 1 = {(I-I)(3X-I)-Q2ql -4}/(X-1)2

D2 = UQ2 q2 -3I+2}/{(I-I)2D 1}

D3 = {iQ2q3 -1}/{(I-I)2D 1}

.1. -2 {'i 2 }D4= 24Q q4j (A-I) D 1 •

(18)

(19)

The quantity D 1 has special geometrical significance. To see this, we use eqn (9) to
calculate the slope of the separatrix at I, namely

A'(1) = (P-3J.2+ 7I+3)/(I-I)3

and then employ eqns (15) (with) =:; I) and (12) in eqn (19k The result is found to be

D 1 = A'(X)-A'(X).

(20)

(21)

Now in view of eqn (9), a sufficient condition that the material curve A(l) vs ). actually
cross the separatrix at the point (X, A) is A'(X) > A'(I), which we shall assume. Hence, we
assume D 1 > O.

The substitution from eqns (16) and (18) into the right-hand member of eqn (4), with
eqns (12), yields

where

(23)

and
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15 1 =N1+D2+Ql-R I

15 2 = N2+D3+Q2-R2+(N1 +D2)(D2+Qt-Rl)-R1(QI -R 1)

aJ = N3+D4+Q3-R3+(N2+D3+NID2+D~)(D2+QI-RI)

+(Q2-Q 1R 1+R7-R2)(N1+D2-R 1)+D 3(N 1+D 2)-R2(QI-Rd·

Expansion of the left-hand member ofeqn (4) yields

1429

(24)

where we employ the notation (p) = O(eP). To assist in deciding the relative orders of
certain quantities that will arise from further expansion of the terms in eqn (25), we note
from eqns (12) that

and further, that

0> -(Q-R) > -2(Q-R) if X>3 (26)

-2(Q-R) > -2R> -3(Q-R) > -(Q+R) > -4(Q-R) > -2Q

if I +4/.j3 < X< 3.5. (27)

The use of eqn (9) shows that restrictions (27) apply to any material for which

-(3-4/.j3)/4 < A(X) < 13/50.

The Mooney-Rivlin material (A == 0) is seen to be in this class.
From eqns (16)

where

(28)

(29)

.:1 = Q-R, (30)

We now bear in mind inequalities (26) and (27) and conclude that, in the limit ,,-+ 00, the
dominant term in eqn (25) is exp (.:1,,). The first approximation to d follows upon equating
this to the dominant term in eqn (22). Thus, d ~ -XlIdoexp (-.:1,,) as" -+ 00. We introduce
the notation

Do = -XlIdo (31)

refer again to inequalities (26) and (27), and conclude that a consistent asymptotic approxi­
mation to d should be of the form

where the a's and b remain to be determined.
From eqn (32) we find

d2 =D~ e-2A~{I+2a1 e- 4IJ +(-2.:1,,)}

d3 =Dt e- 341J {1 +( -.:1,,)}.
(33)
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The expansion of terms of the form exp {ex exp (- (J11)}, with {J> 0, will be needed. For
large 1], we note that

(34)

Then, upon employing eqns (32) and (34) in eqns (16) and (29), and substituting the results
into eqn (25), we obtain

(35)

where

C 1 = .1.11DoE l

C2 = .1.11Do{Elal+DoE2+!.1."DoEi} (36)

C3 = h.I1Do{Eja2+2DoE2al +D~E3+.1.t'/DoEI(Elal +DoE2)+i.1.21]2D~En.

Likewise, the use of eqns (32) and (33) in eqn (22), followed by a comparison of the result
with that of eqn (35), leads to the conclusion that

and

C 1 = DOo1-aj, C2 = at+D~o2-a2'

C3= D~o2al +D~03 -ai +2ala2 -a3

b = -1.

(37)

(38)

RESULTS

The main result of this paper is the development of an asymptotic expression for the
critical value of A., valid for large values of 11, these quantities being related by eqn (4). From
eqns (14) and (32), with eqns (31) and (38) we conclude that

where Xis the smallest value of A. that satisfies eqn (9), do is given by eqn (23), .1. = Q- R,
and vis assigned the value 1or - 1accordingly as flexural or barreling modes are considered.
Explicit expressions for the a's follow directly from eqns (36) and (37) upOn equating the
corresponding C's. Thus, with eqn (31)

al = -Ivdo{b l -.1.11Ed
a2 = PdHot+b 2-.1.11(30 lEI +E2)+~.1.2112 En
a3 = -I3vd6{<5r+30102+03-.1.1](4ojE2+4b2EI +60;E1 +E3)

+4.1.2,,2E1(E2+2(hEI)-~3'13En

(40)

where the <5 's and E's are defined in eqns (24) and (30).
The terms that appear in eqn (39) are written in strictly decreasing order ofexponential

magnitudes, provided the material function A(A.) satisfies restrictions (28). If it does not,
then certain inequalities in the chain (27) would be violated, and an alternate set ofterms
in eqn (32) would be required. Details pertaining to such cases shall not be addressed here.

Although the determination ofI involves only knowledge ofthe values of A ().), through
eqn (9), the quantities aj in eqns (40) depend on various derivatives of A, evaluated at ). = 1'.
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In particular, it is found that do depends on A'(I), Ej depends on AUl([), and {)j depends on
AU+ Il([). To see how these quantities are related to derivatives of the strain-energy function
itself, we employ eqns (1)-(3) and obtain, for an arbitrary value of A.

(41)

where

v = Will +3A.jWI12+3A.1WI22+A.~W222·

Thus, in general

, (A.-I) ( 1) 2 )
A = A.(A.+ 1) A 1- 2A + A.j (A.-I)(I + I/A.) V/T

and, with eqn (9), we find

(42)

(43)

A'([) = ~([-I){[([+l)}-IA(2-A)+(2/).n(1+1/A))O/t. (44)

Higher derivatives of A can be calculated by using eqn (43) and simplifications resulting
from eqns (41) and (9). We note that

etc.
Using eqns (20), (21) and (44) we obtain

4(2[+ 1) A {'!" 1 '!" 2 -} 2 f\) 0: t
D, = (X_I») + [([2-1) 31.-1+ 2(1.-1) A -(2/A.)(I+ I/AJ /.

Whence, with eqn (9), D I > 0 provided

(45)

(46)

Because of the central role played by the Mooney-Rivlin material in theoretical studies,
it is desirable to obtain in more explicit form certain results for it that follow from those
derived above. Thus, if W is a linear function of II and lz, then A == 0 and Xis the positive
root of (cf. eqn (9»

[3-3[2-[-1 = 0

i.e.

From eqns (5) we find Q = A.+ 1, R = A.-I, so that

(47)

.1= O-.R.= 2, (48)

and, from eqns (15)

rl = 2/([-1), r2 = 2/([-1)\ ql = 2([-1)/([+ 1)2

q2 = 2/(X+ 1)2, qj = rj =0, j'~ 3.
(49)
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We may employ eqn (47) to express.P in terms of lower-degree powers of X. The result of
applying this procedure in eqns (20), (21) and (23) yields

(50)

Reductions of this type will be routinely made in what follows without further mention.
The substitution from eqns (48) and (49) into eqns (17), (19) and (30h yields

R1=(X-l)-I, Ql=(X+I)-I; Rj=Qj=O, }=2,3; Ej=O, }=1,2,3;

N 1 = 1(3X"+6X-I)j(3X"+I), N 2 = ~(X+I)j(3X"+I), N 3 = 1/{2(3X" + I)}, (51)

D2 = -~(X-I)2/(2X+ I), D3 = -~(X-I)j(2X+ I), D4 = 0

and we employ eqns (24) to obtain

(jl = 2(2X"+X+ l)j{(3X" + 1)(2X+ I)(X+ I)(X-I)}

(j2 = 4(35X" + 12X+9)/{(3X" + 1)(2X+ 1)2(X+ 1)(X-I)2} (52)

(j3 = -4(270X" + looX+ 79)j{ (3X" + 1)(2X+ 1)3(X+ I)(X- 1)3}.

Upon noting that Ej = O,} = 1,2,3, the use of eqns (39) and (40), with eqn (48), yields, for
the Mooney-Rivlin material

A. = X{l- vdoe- 2'1 + ~d5(j 1e- 4~ - vX"d5«j? + (j2) e- 6~ + vdo e- 2I~

+X3d6«j~+3(jl(j2+(j3)e-8~+<-2(X+ I),,>} (53)

where the b's are given by eqns (52), and from eqns (50)

do = 2X"/(2X+ I). (54)

Series (53) could also be developed by using the Mooney-Rivlin form of Wab initio.
The relevant bifurcation equation from eqn (4) is found to be

(55)

which is equivalent to the alternate version[2,10]

(56)

Comparison of the resulting algebraic forms of the coefficients with those in series (53) can
be aided upon noting the following identities, all of which are equivalent to eqn (47):

4X3=(X"+1)2, (X+l)2=X(X-I)2, (X-I)3=4..t,

3[2+ 1 = X(X+ I)(X-l), X-3 = (X+ l)jX".
(57)

It has been noted previously[4-6] that eqn (47) arises as the condition defining the critical
deformation for a "half-space" of Mooney-Rivlin (or neo-Hookean) material.
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